Novel Fourier Quadrature Transforms and Analytic Signal Representations for Nonlinear and Non-stationary Time Series Analysis
نویسنده
چکیده
The Hilbert transform (HT) and associated Gabor analytic signal (GAS) representation are wellknown and widely used mathematical formulations for modeling and analysis of signals in various applications. In this study, like the HT, to obtain quadrature component of a signal, we propose the novel discrete Fourier cosine quadrature transforms (FCQTs) and discrete Fourier sine quadrature transforms (FSQTs), designated as Fourier quadrature transforms (FQTs). Using these FQTs, we propose sixteen Fourier-Singh analytic signal (FSAS) representations with following properties: (1) real part of eight FSAS representations is the original signal and imaginary part is the FCQT of the real part, (2) imaginary part of eight FSAS representations is the original signal and real part is the FSQT of the real part, (3) like the GAS, Fourier spectrum of the all FSAS representations has only positive frequencies, however unlike the GAS, the real and imaginary parts of the proposed FSAS representations are not orthogonal to each other. The Fourier decomposition method (FDM) is an adaptive data analysis approach to decompose a signal into a set of small number of Fourier intrinsic band functions which are AM-FM components. This study also proposes a new formulation of the FDM using the discrete cosine transform (DCT) with the GAS and FSAS representations, and demonstrate its efficacy for improved time-frequency-energy representation and analysis of nonlinear and non-stationary time series.
منابع مشابه
Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کاملPathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)
This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds. The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...
متن کاملDepth estimation of gravity anomalies by S-transform of analytic signal
The S-transform has widely been used in the analysis of non-stationary time series. A simple method to obtain depth estimates of gravity field sources is introduced in this study. We have developed a new method based on the spectral characteristics of downward continuation to estimate depth of structures. This calculation procedure is based on replacement of the Fourier transform with the S-Tra...
متن کاملSynchrosqueezing-based Transform and its Application in Seismic Data Analysis
Seismic waves are non-stationary due to its propagation through the earth. Time-frequency transforms are suitable tools for analyzing non-stationary seismic signals. Spectral decomposition can reveal the non-stationary characteristics which cannot be easily observed in the time or frequency representation alone. Various types of spectral decomposition methods have been introduced by some resear...
متن کاملHolomorphic transforms with application to affine processes
In a rather general setting of Itô-Lévy processes we study a class of transforms (Fourier for example) of the state variable of a process which are holomorphic in some disc around time zero in the complex plane. We show that such transforms are related to a system of analytic vectors for the generator of the process, and we state conditions which allow for holomorphic extension of these transfo...
متن کامل